

2. Zwischenstand der Vorhaben zu eTicketing und digitale Vernetzung Wesentliche Ergebnisse zum Projektstand Ende März 2018

Langtitel / Kurztitel

Digitale Mobilität – Fahrzeug und Haltestelle (DiMo-FuH)

Partner / Zuwendungsempfänger + assoziierte Partner

Partner (Institution, Ansprechpartner)

INIT GmbH (Konsortialführerschaft, Dirk Weißer/Manuel Quinting), Fraunhofer-Institut für angewandte Informationstechnik FIT (Dr. Karl-Heinz-Krempels), IVU Traffic Technologies AG (Dr. Claus Dohmen), MENTZ GmbH (Werner Kohl), Stadtwerke München GmbH (Claudius Blank), Technische Universität Ilmenau (Prof. Dr. Heidi Krömker)

Assoziierte Partner

KVB Kölner Verkehrs-Betriebe AG (Jochen Klöck), Trapeze Germany GmbH (Manfred Retka), Verkehrsbetriebe Karlsruhe GmbH (Ralf Messerschmidt), Verband Deutscher Verkehrsunternehmen e.V (Berthold Radermacher)

Kernziele des Projektes

- Schaffung von Standards zur Vernetzung
 - o des ÖV-Fahrzeugs mit seiner Umgebung
 - o der Komponenten innerhalb einer Haltestelle
- Verbesserung der Informationskonsistenz für den Fahrgast
- Verbesserung der Informationstransparenz für den Fahrgast
- Verbesserung der Informationsverlässlichkeit für den Fahrgast

Arbeitspakete/-inhalte und Meilensteine

Arbeitsschritte:

Anforderungsanalyse, Architekturentwurf und –beschreibung, Schnittstellendefinition, Umsetzung und Implementierung, Systemintegration in Verbindung mit Feldtests und Evaluation, Standardisierung **Meilensteine**:

Systemarchitektur- und Schnittstellenspezifikation, Systemintegration und Feldtest, Standardisierungsvorschlag

Erzielte (Zwischen)Ergebnisse zum Projektstand Ende März 2018

Systemarchitektur

In Abhängigkeit der Anwendungsfälle unterschiedliche Kommunikationsformen (Request/Response, Abo-Verfahren, Query, Publish/Suscribe), eigenständige Datenhaltung für Echtzeit-Informationen, Anleihen bei IoT-Architekturen (Broker-Architektur)

Schnittstellenspezifikation

Keine eigenständige Spezifikation für schmalbandige Kommunikationsmedien, Aufbau des Datenmodells primär aus NeTEx, SIRI, Transmodel, explizite Anwendung von Funktionen, Kommunikation via http bzw. MQTT, Objektbeschreibungen in XML

Erwartete Ergebnisse bis Projektende zum 30.09.2018

- Beschreibung einer modularen Systemarchitektur für den Informationsaustausch von ÖV-Fahrzeugen mit ihrer Umgebung
- Offener Standard für die Kommunikation von ÖV-Fahrzeugen mit ihrer Umgebung
- Beschreibung einer modularen Systemarchitektur für den Informationsaustausch an Haltestellen
- Offener Kommunikationsstandard für den Informationsaustausch an Haltestellen
- Nachweis der Funktionstüchtigkeit anhand verschiedener Demonstrationsszenarien